

Electric wires are of different types with different manufacturing materials and Physical and electrical properties. There are certain ways to assess the quality of various types of electric and other wires.
This page has an online Wire Gauge Calculator that calculates the wire gauge & size chart by just providing the AWG wire gauge of wires. You can get a chart with a complete analysis of your wire including the diameter of the wire in mm & inches, the cross-section area of the wire in mm 2& inch2, and the resistance of the wire.
Enter or select wire gauge & wire type and press the given calculate button:
American wire gauge (AWG) size calculator and chart.
* @ 68°F or 20°C
** Diameter and cross sectional area do not include the insulation.
*** Results may change with real wires: different resistivity of material and number of strands in wire
AWG # | Diameter (inch) |
Diameter (mm) |
Area (kcmil) |
Area (mm2) |
---|---|---|---|---|
0000 (4/0) | 0.4600 | 11.6840 | 211.6000 | 107.2193 |
000 (3/0) | 0.4096 | 10.4049 | 167.8064 | 85.0288 |
00 (2/0) | 0.3648 | 9.2658 | 133.0765 | 67.4309 |
0 (1/0) | 0.3249 | 8.2515 | 105.5345 | 53.4751 |
1 | 0.2893 | 7.3481 | 83.6927 | 42.4077 |
2 | 0.2576 | 6.5437 | 66.3713 | 33.6308 |
3 | 0.2294 | 5.8273 | 52.6348 | 26.6705 |
4 | 0.2043 | 5.1894 | 41.7413 | 21.1506 |
5 | 0.1819 | 4.6213 | 33.1024 | 16.7732 |
6 | 0.1620 | 4.1154 | 26.2514 | 13.3018 |
7 | 0.1443 | 3.6649 | 20.8183 | 10.5488 |
8 | 0.1285 | 3.2636 | 16.5097 | 8.3656 |
9 | 0.1144 | 2.9064 | 13.0927 | 6.6342 |
10 | 0.1019 | 2.5882 | 10.3830 | 5.2612 |
11 | 0.0907 | 2.3048 | 8.2341 | 4.1723 |
12 | 0.0808 | 2.0525 | 6.5299 | 3.3088 |
13 | 0.0720 | 1.8278 | 5.1785 | 2.6240 |
14 | 0.0641 | 1.6277 | 4.1067 | 2.0809 |
15 | 0.0571 | 1.4495 | 3.2568 | 1.6502 |
16 | 0.0508 | 1.2908 | 2.5827 | 1.3087 |
17 | 0.0453 | 1.1495 | 2.0482 | 1.0378 |
18 | 0.0403 | 1.0237 | 1.6243 | 0.8230 |
19 | 0.0359 | 0.9116 | 1.2881 | 0.6527 |
20 | 0.0320 | 0.8118 | 1.0215 | 0.5176 |
21 | 0.0285 | 0.7229 | 0.8101 | 0.4105 |
22 | 0.0253 | 0.6438 | 0.6424 | 0.3255 |
23 | 0.0226 | 0.5733 | 0.5095 | 0.2582 |
24 | 0.0201 | 0.5106 | 0.4040 | 0.2047 |
25 | 0.0179 | 0.4547 | 0.3204 | 0.1624 |
26 | 0.0159 | 0.4049 | 0.2541 | 0.1288 |
27 | 0.0142 | 0.3606 | 0.2015 | 0.1021 |
28 | 0.0126 | 0.3211 | 0.1598 | 0.0810 |
29 | 0.0113 | 0.2859 | 0.1267 | 0.0642 |
30 | 0.0100 | 0.2546 | 0.1005 | 0.0509 |
31 | 0.0089 | 0.2268 | 0.0797 | 0.0404 |
32 | 0.0080 | 0.2019 | 0.0632 | 0.0320 |
33 | 0.0071 | 0.1798 | 0.0501 | 0.0254 |
34 | 0.0063 | 0.1601 | 0.0398 | 0.0201 |
35 | 0.0056 | 0.1426 | 0.0315 | 0.0160 |
36 | 0.0050 | 0.1270 | 0.0250 | 0.0127 |
37 | 0.0045 | 0.1131 | 0.0198 | 0.0100 |
38 | 0.0040 | 0.1007 | 0.0157 | 0.0080 |
39 | 0.0035 | 0.0897 | 0.0125 | 0.0063 |
40 | 0.0031 | 0.0799 | 0.0099 | 0.0050 |
The n gauge wire diameter dn in inches (in) is equal to 0.005in times 92 raised to the power of 36 minus gauge number n, divided by 39:
dn (in) = 0.005 in × 92(36-n)/39
The n gauge wire diameter dn in millimeters (mm) is equal to 0.127mm times 92 raised to the power of 36 minus gauge number n, divided by 39:
dn (mm) = 0.127 mm × 92(36-n)/39
The n gauge wire's cross sercional area An in kilo-circular mils (kcmil) is equal to 1000 times the square wire diameter d in inches (in):
An (kcmil) = 1000×dn2 = 0.025 in2 × 92(36-n)/19.5
The n gauge wire's cross sercional area An in square inches (in2) is equal to pi divided by 4 times the square wire diameter d in inches (in):
An (in2) = (π/4)×dn2 = 0.000019635 in2 × 92(36-n)/19.5
The n gauge wire's cross sercional area An in square millimeters (mm2) is equal to pi divided by 4 times the square wire diameter d in millimeters (mm):
An (mm2) = (π/4)×dn2 = 0.012668 mm2 × 92(36-n)/19.5
The n gauge wire resistance R in ohms per kilofeet (Ω/kft) is equal to 0.3048×1000000000 times the wire's resistivity ρ in ohm-meters (Ω·m) divided by 25.42 times the cross sectional area An in square inches (in2):
Rn (Ω/kft) = 0.3048 × 109 × ρ(Ω·m) / (25.42 × An (in2))
The n gauge wire resistance R in ohms per kilometer (Ω/km) is equal to 1000000000 times the wire's resistivity ρ in ohm-meters (Ω·m) divided by the cross sectional area An in square millimeters (mm2):
Rn (Ω/km) = 109 × ρ(Ω·m) / An (mm2)
Indeed. The more extended the distance, the lower the check (bigger breadth), to keep up with the assistance voltage at the mark of load.15-Dec-2022